回归分析

导入数据

1
2
3
import pandas 
df = pandas.read_csv('house-prices.csv')
df.head()

one-hot 处理

1
2
3
4
5
6
7
8
9
10
11
12
13
#对Brick与Neighborhood两列数据进行one-hot处理
house = pandas.concat([df,pandas.get_dummies(df['Brick']),pandas.get_dummies(df['Neighborhood'])] ,axis=1)
#删除No列
del house['No']
#删除West列
del house['West']
#删除Brick列
del house['Brick']
#删除Neighborhood列
del house['Neighborhood']
#删除Home列
del house['Home']
house.head()

statsmodels.api

1
2
3
4
#X为house的'SqFt', 'Bedrooms', 'Bathrooms', 'Offers', 'Yes', 'East', 'North'列
X = house[['SqFt', 'Bedrooms', 'Bathrooms', 'Offers', 'Yes', 'East', 'North']]
#Y为house的Price列的values
Y = house['Price']
1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy.core.multiarray
from pandas.core import datetools
#导入statsmodels.api里面的sm,用于评估模型
import statsmodels.api as sm
#利用sm.add_constant为X增加一列名为const,值为1的数据
X2 = sm.add_constant(X)
#调用sm的OLS函数对Y,X2进行模型创建
est = sm.OLS(Y,X2)
#调用est的fit函数创建回归结果
est2 = est.fit()
#输出打印est2的概要信息
print(est2.summary())
est2.aic

最优组合

1
2
3
4
5
predictorcols = ['SqFt', 'Bedrooms', 'Bathrooms', 'Offers', 'Yes', 'East', 'North']
import itertools
for i in range(1,len(predictorcols)+1):
for variables in itertools.combinations(predictorcols,i):
print(variables)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import itertools#导入itertools库
#创建字典AICs ,用于保存每个列名组合的aic结果
AICs = {}
#for循环,循环变量i从1到predictorcols列表的长度加1
for i in range(1,len(predictorcols)+1):
#再次for循环,循环变量var的范围为predictorcols的各种i个元素组合集合itertools.combinations(predictorcols,i)
for var in itertools.combinations(predictorcols,i):
#predictors为数据框X里的var列的数据,记得要先将var转换成list
predictors = X[list(var)]
#利用sm.add_constant为predictors增加一列名为const,值为1的数据
predictors2 = sm.add_constant(predictors)
#调用sm的OLS函数对y,predictors2进行模型创建
est = sm.OLS(Y,predictors2)
#调用est的fit函数创建回归结果
res = est.fit()
print(res.aic) # 每种组合的aic值
#将res.aic的结果赋值给 AICs的每一个var
AICs[var] = res.aic
1
2
3
4
5
6
#导入collections的Counter
from collections import Counter
#调用Counter,对AICs进行降序排序
c = Counter(AICs)
#调用排序后的c倒数10个数据对象
c.most_common()[::-10]

本站由 VITAN 使用 Stellar 主题创建。
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。